\(\int \frac {(a+b \cos (c+d x))^{5/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [620]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 445 \[ \int \frac {(a+b \cos (c+d x))^{5/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {(a-b) \sqrt {a+b} \left (2 a^2-b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d}-\frac {\sqrt {a+b} \left (2 a^2-6 a b-b^2\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}-\frac {5 a b \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 a^2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {\left (2 a^2-b^2\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

[Out]

2*a^2*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)-(2*a^2-b^2)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d/cos
(d*x+c)^(1/2)+(a-b)*(2*a^2-b^2)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-
b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d-(2*a^2-6*a*b-b^
2)*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*
(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/d-5*a*b*cot(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(
1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*
(1+sec(d*x+c))/(a-b))^(1/2)/d

Rubi [A] (verified)

Time = 1.20 (sec) , antiderivative size = 445, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {2871, 3140, 3132, 2888, 3077, 2895, 3073} \[ \int \frac {(a+b \cos (c+d x))^{5/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {\sqrt {a+b} \left (2 a^2-6 a b-b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}+\frac {(a-b) \sqrt {a+b} \left (2 a^2-b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}-\frac {\left (2 a^2-b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {2 a^2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {5 a b \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d} \]

[In]

Int[(a + b*Cos[c + d*x])^(5/2)/Cos[c + d*x]^(3/2),x]

[Out]

((a - b)*Sqrt[a + b]*(2*a^2 - b^2)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Co
s[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/
(a*d) - (Sqrt[a + b]*(2*a^2 - 6*a*b - b^2)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]
*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a
 - b)])/d - (5*a*b*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]
*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a
 - b)])/d + (2*a^2*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]) - ((2*a^2 - b^2)*Sqrt[a + b*C
os[c + d*x]]*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

Rule 2871

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-(b^2*c^2 - 2*a*b*c*d + a^2*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/
(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e
 + f*x])^(n + 1)*Simp[b*(m - 2)*(b*c - a*d)^2 + a*d*(n + 1)*(c*(a^2 + b^2) - 2*a*b*d) + (b*(n + 1)*(a*b*c^2 +
c*d*(a^2 + b^2) - 3*a*b*d^2) - a*(n + 2)*(b*c - a*d)^2)*Sin[e + f*x] + b*(b^2*(c^2 - d^2) - m*(b*c - a*d)^2 +
d*n*(2*a*b*c - d*(a^2 + b^2)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 2888

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[2*b*(Tan
[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*El
lipticPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)],
 x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3132

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_.) + (b_.)*sin[(e_.) + (f_.
)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[C/b^2, Int[Sqrt[a + b*Sin[e + f
*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[1/b^2, Int[(A*b^2 - a^2*C + b*(b*B - 2*a*C)*Sin[e + f*x])/((a + b
*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a
*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3140

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(Sqrt[c + d*Sin[
e + f*x]]/(d*f*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[1/(2*d), Int[(1/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Si
n[e + f*x]]))*Simp[2*a*A*d - C*(b*c - a*d) - 2*(a*c*C - d*(A*b + a*B))*Sin[e + f*x] + (2*b*B*d - C*(b*c + a*d)
)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0
] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a^2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+2 \int \frac {\frac {3 a^2 b}{2}-\frac {1}{2} a \left (a^2-3 b^2\right ) \cos (c+d x)-\frac {1}{2} b \left (2 a^2-b^2\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx \\ & = \frac {2 a^2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {\left (2 a^2-b^2\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {\int \frac {\frac {1}{2} a b \left (2 a^2-b^2\right )+3 a^2 b^2 \cos (c+d x)+\frac {5}{2} a b^3 \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{b} \\ & = \frac {2 a^2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {\left (2 a^2-b^2\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {\int \frac {\frac {1}{2} a b \left (2 a^2-b^2\right )+3 a^2 b^2 \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{b}+\frac {1}{2} \left (5 a b^2\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx \\ & = -\frac {5 a b \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 a^2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {\left (2 a^2-b^2\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {1}{2} \left (a \left (2 a^2-b^2\right )\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx-\frac {1}{2} \left (a \left (2 a^2-6 a b-b^2\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx \\ & = \frac {(a-b) \sqrt {a+b} \left (2 a^2-b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d}-\frac {\sqrt {a+b} \left (2 a^2-6 a b-b^2\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}-\frac {5 a b \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 a^2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {\left (2 a^2-b^2\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 11.99 (sec) , antiderivative size = 462, normalized size of antiderivative = 1.04 \[ \int \frac {(a+b \cos (c+d x))^{5/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \left (a^2 \cos ^2(c+d x) (a+b \cos (c+d x)) \sin (c+d x)+\cos ^2\left (\frac {1}{2} (c+d x)\right )^{5/2} \left (\frac {\cos (c+d x)}{1+\cos (c+d x)}\right )^{3/2} \sqrt {1+\cos (c+d x)} \sqrt {\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )} \left (-2 \left (2 a^3+2 a^2 b-a b^2-b^3\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )+4 a \left (a^2+3 a b-3 b^2\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+20 a b^2 \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+\frac {1}{2} \left (2 a^2-b^2\right ) (a+b \cos (c+d x)) \sec ^3\left (\frac {1}{2} (c+d x)\right ) \left (\sin \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {3}{2} (c+d x)\right )\right )\right )\right )}{d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \]

[In]

Integrate[(a + b*Cos[c + d*x])^(5/2)/Cos[c + d*x]^(3/2),x]

[Out]

(2*(a^2*Cos[c + d*x]^2*(a + b*Cos[c + d*x])*Sin[c + d*x] + (Cos[(c + d*x)/2]^2)^(5/2)*(Cos[c + d*x]/(1 + Cos[c
 + d*x]))^(3/2)*Sqrt[1 + Cos[c + d*x]]*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^2]*(-2*(2*a^3 + 2*a^2*b - a*b^2 - b^
3)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[Arc
Sin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 4*a*(a^2 + 3*a*b - 3*b^2)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqr
t[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 2
0*a*b^2*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Elliptic
Pi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + ((2*a^2 - b^2)*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^3*(S
in[(c + d*x)/2] - Sin[(3*(c + d*x))/2]))/2)))/(d*Cos[c + d*x]^(5/2)*Sqrt[a + b*Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2507\) vs. \(2(413)=826\).

Time = 10.91 (sec) , antiderivative size = 2508, normalized size of antiderivative = 5.64

method result size
default \(\text {Expression too large to display}\) \(2508\)

[In]

int((a+cos(d*x+c)*b)^(5/2)/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/d*(csc(d*x+c)^2*(1-cos(d*x+c))^2-1)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/
(csc(d*x+c)^2*(1-cos(d*x+c))^2+1))^(1/2)*(2*a^3*(csc(d*x+c)-cot(d*x+c))+b^3*(csc(d*x+c)-cot(d*x+c))-2*csc(d*x+
c)^2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(
d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x+c))^2+2*csc(d*x+c)^2*
EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c
)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x+c))^2-csc(d*x+c)^2*Ellipti
cE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^3*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(
1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x+c))^2+a*b^2*(csc(d*x+c)-cot(d*x+c
))+csc(d*x+c)^5*b^3*(1-cos(d*x+c))^5-6*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c)
)^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^
2*b+6*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))
^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2+2*(-csc(d*x+c)^2*(1-cos(d*x+c
))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticE(co
t(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b-(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-c
os(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^
(1/2))*a*b^2-10*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-c
os(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*a*b^2-csc(d*x+c)^5*a*
b^2*(1-cos(d*x+c))^5-2*csc(d*x+c)^5*a^2*b*(1-cos(d*x+c))^5-2*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*
x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-
(a-b)/(a+b))^(1/2))*a^3+2*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c
)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3-(-csc(d*x+c
)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1
/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^3+2*csc(d*x+c)^5*a^3*(1-cos(d*x+c))^5-2*csc(d*x+c)
^3*b^3*(1-cos(d*x+c))^3+4*csc(d*x+c)^3*a^3*(1-cos(d*x+c))^3+2*a^2*b*(csc(d*x+c)-cot(d*x+c))-6*csc(d*x+c)^2*Ell
ipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)
^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x+c))^2+6*csc(d*x+c)^2*Ellipt
icF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*
a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x+c))^2+2*csc(d*x+c)^2*EllipticE
(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(
1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x+c))^2-csc(d*x+c)^2*EllipticE(cot(
d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos
(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x+c))^2-10*csc(d*x+c)^2*EllipticPi(cot(d
*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*a*b^2*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-c
os(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x+c))^2)/(csc(d*x+c)^2*a*(1-cos(d*x+c)
)^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^2/(-(csc(d*x+c)^2*(1-cos(d*x+c))^2-
1)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1))^(3/2)

Fricas [F]

\[ \int \frac {(a+b \cos (c+d x))^{5/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(5/2)/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)*sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(3/2), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^{5/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))**(5/2)/cos(d*x+c)**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^{5/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(5/2)/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^(5/2)/cos(d*x + c)^(3/2), x)

Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^{5/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(5/2)/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^(5/2)/cos(d*x + c)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^{5/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}}{{\cos \left (c+d\,x\right )}^{3/2}} \,d x \]

[In]

int((a + b*cos(c + d*x))^(5/2)/cos(c + d*x)^(3/2),x)

[Out]

int((a + b*cos(c + d*x))^(5/2)/cos(c + d*x)^(3/2), x)